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Uvod

INTRODUCTION
In this lesson students will learn about classification basics and how to
project Bayesian classifier. Two classification problems are presented
and solved theoretically and practically.

In this lecture we will first introduce:

• Basic concepts of classification
• Definition of classifier
• Choice of classifier

After that, two classification problems are given and solved.

First classification problem is binary classification of artificially generated data with Bayesian
classifier. Mathematical concepts for solving of this type of classification problem are
presented. Solution is implemented in programming language Python.

Second problem is classification of Iris dataset with Bayesian classifier. Also, mathematical
concepts for solving of this type of classification problem are presented and solution is
implemented in Python.

Previous knowledge assumed for this lecture is: Basics of calculus, basics of linear algebra,
basics of statistics and basic of Python programming.
<p> <youtube width="460" height="258" src="https://drive.google.com/file/d/
1iWl7d6lFhnE9jRSJl_FcztkEzN4h2kDa/preview" /> </p>
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Slika 1.1 Two classes and classification line [1]

Poglavlje 1

Classification

BASIC CONCEPTS OF CLASSIFICATION
Basic concepts of classification are presented in this section.

Classification is supervised machine learning technique which is widely used in many real
world problems.

Basic question: How to separate data on classes?

Example: I have a dataset with images of cats and dogs. If a new image arrives, will my model
be able to classify it? Will my model be trained well to recognize new image that wasn't in
dataset that model was trained on?

How can we perform a classification? We can separate our data with function that splits data
with minimal error.

There are many classifiers that we can use for solving a particular problem: Bayesian
classifier, logistic regression, support vector machine, neural networks, decision trees...

Actually, we are looking for function that splits data on classes. On the image right, which
function is better?

Question is how to find classification function? We need to optimize parameters of some
function, or to make some estimation of the function distribution. We must have labeled data
for parameter estimation.
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Slika 1.2 Learning phase [2], [3]

Slika 1.3 Implementation of classifier on new data [3]

Ova lekcija sadrži video materijal. Ukoliko želite da pogledate ovaj video morate da
otvorite LAMS lekciju.

DEFINITION OF CLASSIFIER
In this section classifier is defined.

Classification is supervised learning problem because data must be labeled for parameter
optimization. For each sample we must have information about class belonging.

When we say classifier we actually mean on function (f) that maps some input vector (X) to
categorical output y. We have two phases.

In phase I (learning phase) learning algorithm learns on training dataset, we have X and y
and we want to learn f.

In phase II (use) we have X (new data that model was not trained on) and f and we wish to
compute predicted value of y.

Output of classification is always categorical.

Examples: Approve credit-YES or NO. Scrap product-YES or NO. Subject of paper article-
SPORT, POLITICS, CULTURE. Patient is sick-YES or NO.

There are many different classifiers that uses different techniques:

• Probability (Naive Bayes, Bayes net)
• Rules (Decision trees, Rules generators)
• Functions (Regression, Support vector machine, Neural networks)

Poglavlje 1 Classification
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Slika 1.4 [4]

Slika 1.5 [5]

• Instances (K nearest neighbors)

What is the difference?

All of these classifiers split space differently.

BIAS/VARAINCE TRADEOFF
In this section bias/varaince tradeoff is described.

On the image below we can see that different classifiers split space differently. Question is
how to choose the best classifier for our problem? We want model that explains well enough
training data, but also model must be generalized.

Model must be good to explain the problem well, but also it must be efficient on new data.
Underfitting and overfitting must be avoided for good results.

In literature avoiding of underfitting and overfitting is known as bias/variance tradeoff.

Ova lekcija sadrži video materijal. Ukoliko želite da pogledate ovaj video morate da
otvorite LAMS lekciju.

CHOICE OF CLASSIFIER
In this section concepts of classifier choise are described.

Poglavlje 1 Classification
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Question is how to choose best classifier?
Trough iterative testing process
We always test our model on new data (data that model wasn't trained on)
How do we measure success of classifier?
With different error measurements. We measure how many samples are well classified.
Interpretation-how can we explain our model.
Implementation-how easy or difficult is to implement the classifier and maintain the classifier.
Activity that precedes the classification is choice of descriptors that describe in the best way
data that we want to classify. These descriptors are called features.

Usually there are several features, and they are put in one random vector. Such vector is
called pattern in pattern recognition theory [6].

Success of classifier depends on good choice of features.

Ova lekcija sadrži video materijal. Ukoliko želite da pogledate ovaj video morate da
otvorite LAMS lekciju.

Ova lekcija sadrži video materijal. Ukoliko želite da pogledate ovaj video morate da
otvorite LAMS lekciju.

Poglavlje 1 Classification
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Slika 2.1 Two classes in 2D space [Source: Author]

Poglavlje 2

First classification problem

BINARY CLASSIFICATION OF ARTIFICIALLY
GENERATED DATA
In this section first practical problem in this lesson is posted.

First practical problem: Binary classification of artificially generated data.

Two classes with two-dimensional shapes are given with normal probability density functions:

Task: Assuming that prior probabilities of classes are same, generate 200 samples for
each class and project a minimal error Bayesian classifier. Visualize data and discrimination
function h(x)=0. Calculate Type I error and Type II error and accuracy of classifier.

On the Figure 1, 400 samples from two classes (200 samples from each class) in 2D space
with given probability density functions and generated. Software solution for generating of
samples and their representation in 2D space will be given later.

Our task is to find classification line that will separate our data in two classes with minimal
error. This line is called discrimination function and in our case it is Bayesian classifier.

f1(x) = N(M1, Σ1),M1 = [−1
4

] , Σ1 = [ 2
−1

−1
1

]

f2(x) = N(M2, Σ2),M2 = [ 3
1

] , Σ2 = [ 2
−1

−1
1

]
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In this case we have binary classification, because we have classification on two classes.
Our data are artificial, it means that we generated them based on given probability density
functions and number of samples for each class. Also, we can see that our classes are
not separable, it means that we have overlapping between classes. Thus, we can expect
classification error.

Our classes have same covariance matrix (with negative covariances) and we can see on
Figure 1 that our data from both classes have same orientation in space towards bottom right
corner .

RANDOM VECTORS AND THEIR PROPERTIES
In this section theoretical concepts of random vectors are given.

For our binary classification problem solving it is necessary to introduce some mathematical
concepts of random vectors.

In theory of statistical pattern recognition, measurements from one pattern or object are
treated as random vectors. We will use term random variable in context of pattern recognition
because It is clear that every time when we repeat the measurement, we will get some other
value, which leads us to the idea of characterizing the measurement of physical quantity as
some random variable that gives a new, different value in each realization. However, these
values are not completely random, but subject to some laws. In order to formalize these laws,
we will introduce two functions that will be joined to this random variable. First function is
called distribution function, noted as Fx(x) , and second is called probability density function,
noted as fx(x).

Distribution function is defined as:

and it represents probability that random variable X will take value that is less or equal to
argument x. It has three main characteristics:

Probability density function is defined as:

PROBABILITY DENSITY FUNCTION AND
DISTRIBUTION PARAMETERS
In this section

FX(x) = Pr {X ≤ x}

FX(∞) = 1 ⇔ Pr {X ≤ ∞} = 1

FX(−∞) = 0 ⇔ Pr {X ≤ −∞} = 0

x1 ≤ x2 ⇒ FX(x1) ≤ FX(x2)

fX(x) =
∂F(x)
∂x

Poglavlje 2 First classification problem
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Distribution function can be written as:

Probability density function has two constraints:

Random vector X is completely described with distribution function or with probability density
function. However, in many practical situations, these functions can't be determined or
they are too complex. In those cases we must choose some other parameters that are
less informative, but much more convenient in numerical sense. First and most important
parameter is mathematical expectation or mean value of radnom vector X:

where integration goes trough whole space of random vector X. Conditional mathematical
expectation of random vector X for class wi is integral

Second very important parameter that characterize random vector X is covariance matrix:

SAMPLE ESTIMATION TECHNIQUE
In this section sample estimation technique is presented.

Component cij of this matrix is:

Thus, the diagonal elements of the covariance matrix form the variances of individual random
variables in random vector, while non-diagonal elements represent covariances between
random variables Xi and Xj . Although mathematical expectation and the covariance matrix
are very important parameters which describe the distribution of a random vector, they are
mostly unknown in practice and need to be estimated based on measured samples. This

FX(x) = ∫ x

−∞
fX(τ)dτ

FX(∞) = 1 ⇒ ∫ ∞

−∞
fX(x) = 1

(x1 ≤ x2 ⇒ FX(x1) ≤ FX(x2)) ⇒ (∀x)fX(x) ≥ 0

MX = E {X} = ∫
σX

xfX(x)dx

Mi = E {X/wi} = ∫ xf(x/wi)dx

Σ = E {(X −MX)(X −MX)T}

Σ = E

⎧

⎩
⎨
⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪

⎡

⎣
⎢⎢⎢⎢⎢⎢

X1 −m1

.

.

.
Xn −mn

⎤

⎦
⎥⎥⎥⎥⎥⎥ [X1 −m1 . . . Xn −mn ]

⎫

⎭
⎬
⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪

=

⎡

⎣
⎢⎢⎢⎢⎢⎢

c11

.

.

.
cn1

.

.

.

.

.

.

c1n

cnn

⎤

⎦
⎥⎥⎥⎥⎥⎥

cij = E {(Xi −mi)(Xj −mj)} ; (i, j = 1, . . . ,n)

Poglavlje 2 First classification problem
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procedure is called sample estimation technique. This technique is most commonly used to
estimate the mean and variance of a random variable. Namely, if it is necessary to estimate
the mean value of the random variable Y whose realizations Yi ; i=1,..N are known, the most
simple way is to determine arithmetic mean:

Similarly, estimation of variance can be written as:

HYPOTHESIS TESTING
Introduction to a priori and a posteriori probability of a class

The main goal of pattern recognition is to decide to which category observed sample belongs.
Based on observation or measurement a measurement vector is formed. This vector serves
as an input to the decision rule through which this vector joins one of the analyzed classes.
Hypothesis testing is a whole family of methods solving of this type of a problem. These
methods are very powerful, but they assume knowing of joined probability density functions
from all classes and this information is often unknown in practice.

In pattern recognition theory, we deal with random vectors gained from different classes and
each of them is characterized with its distribution function and probability density function.
These functions are called conditional functions, and according to that, conditional probability
density function for i-th class is noted as:

where wi denotes class i, and L is overall number of classes. Unconditional probability density
function of random vector X, which is often called mixed density function ia given as:

where Pi denotes a priori probability of appareance of i-th class. A posteriori probability of
class when random vector X is given is noted as P(wi/x) or qi(x) and can be calculated
based on Bayesian theorem:

For our problem we will assume that measurement vector is random vector whose conditional
probability density function depends from class that sample comes from. So far as these
conditional probability density function are known, then pattern recognition problem
becomes statistical hypothesis testing problem. We will observe case where we have two

mŶ =
1
N

∑
1

N

Yi

σ2
Y
^ =

1
N

∑
1

N

(Yi −mŶ )2

f(x/wi)orfi(x); i = 1, 2, . . . ,L

f(x) = ∑
i=1

L

Pifi(x)

qi(x) =
Pifi(x)

f(x)

Poglavlje 2 First classification problem
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classes w1 and w2 whose a priori probabilities P1 and P2 are known, as well as corresponding
a posteriori probability density functions (f1(X) = f(X/w1) and f2(X) = f(X/w2)).

BAYESIAN MINIMAL ERROR DECISION RULE
In this section Bayesian minimal error decision rule is given.

Let assume that we have measurement vector X and our task is to determine to which of two
classes this vector belongs. Simple decision rule can be based on conditional probabilities
q1(X) = Pr(w1/X) and q2(X) = Pr(w2/X) as follows:

A posteriori probabilities qi(X) represent conditional probability that sample X comes from
class wi if its numerical value is known, ie. realization. These probabilities can be calculated
based on a priori probabilities of classes appearance Pi and a posteriori probability density
functions of measurement vectors fX = fX(X/wi) , using Bayesian theorem:

Because mixed (a priori) probability density function is positive and joint for both a posteriori
probabilities, decision rule can be written as follows:

or we can write above eqations as follows:

LIKELIHOOD RATIO, TRESHOLD VALUE AND
DISCRIMINATION FUNCTION
Very important terms in pattern recognition theory are introduced-
likelihood ratio, treshold value and discrimination function.

Expression l(X) is called likelihoodratio , and that is very important quantity in pattern
recognition theory. Ratio P2/P1 is called tresholdvalue in decision making. It is common
practice to apply negative logarithm on likelihood ratio, and then decision rule has form:

q1(X) > q2(X) ⇒ X ∈ w1

q1(X) < q2(X) ⇒ X ∈ w2

qi(X) =
fi(X)Pi

f(X)
=

fi(X)Pi

f1(X)P1 + f2(X)P2

P1f1(X) > P2f2(X) ⇒ X ∈ w1

P1f1(X) < P2f2(X) ⇒ X ∈ w2

l(X) =
f1(X)

f2(X)
>

P2

P1
⇒ X ∈ w1

l(X) =
f1(X)

f2(X)
<

P2

P1
⇒ X ∈ w2

Poglavlje 2 First classification problem
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A sign of inequality changed direction because of negative logarithm use. Expression h(X)
is called discrimination function . Further on we will consider that
P1 = P2 = 0.5 ⇒ ln(P1/P2) = 0 . Stated rules above are called Bayesian rule or
minimalerrordecisiontest . For analysis of stated rule, it is very important to determine
probability of decision error. This classification rule can't ensure perefect classification (as
well as other rules). When we say probability error, we consider probability of event that
rule will bring wrong decision about measurement vector belonging to a class. Conditional
probability of error for measurement vector, noted as r(X), is equal to smaller of probabilities
q1(X) and q2(X) , ie.

Total error which is called Bayesian error, noted as ϵ can be calculated as follows:

TYPE I PROBABILITY ERROR AND TYPE II
PROBABILITY ERROR
In this section Type I probability error and Type II probability error are
introduced.

where

Probability ϵ1 is called Type I probability error and it represents probability that sample
which comes from first class is wrongly classified. Similarly, probability ϵ2 is called Type II
probability error and it represents probability that sample which comes from second class
is wrongly classified. In a total error relation first equality represents definiton of this error,
while other equality is applied Bayesian theorem. Integration area L1 is the area from
which the decision rule joins the measurement vector X to the class w1 and analogously,
integration area L2 corresponds to those vectors X which the decision rule classifies into a
class w2 . Consequently, these areas are often called w1 -area and w2 -area, respectively.
For measurement vectors from L1 area holds the relation P1f1(X) > P2f2(X) and according
to that conditional probability error is r(X) = P2f2(X)/f(X) . Analogously, for vectors from
L2 area holds the relation r(X) = P1f1(X)/f(X) . Based on that, we can say that Bayesian

h(X) = −ln(l(X)) = −ln(f1(X)) + ln(f2(X)) < ln(
P1

P2
) ⇒ X ∈ w1

h(X) = −ln(l(X)) = −ln(f1(X)) + ln(f2(X)) > ln(
P1

P2
) ⇒ X ∈ w2

r(X) = min[q1(X), q2(X)]

ϵ = E {r(X)} = ∫ r(X)f(X)dX = ∫ min[q1(X), q2(X)]f(X)dX

= ∫ min[P1f1(X),P2f2(X)]dX = P1 ∫
L2

f1(X)dX + P2 ∫
L1

f2(X)dX

= P1ϵ1 + P2ϵ2

ϵ1 = ∫
L2

f1(X)dX; ϵ2 = ∫
L1

f2(X)dX

Poglavlje 2 First classification problem
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Slika 2.2 Illustration of one dimensional random variables classification [7]

probability error consists of two terms. One of them refers to wrongly classified vectors from
class w1 , while other refers to wrongly classified vectors from the class w2 .

NORMAL DISTRIBUTION OF RANDOM VECTOR
In this section normal distribution of random vector is introduced.

On the Figure 2 Bayesian decision rule for one dimensional measurement vectors is
illustrated: Decision boundary is set to x=t, and that is the point where P1f1(X) = P2f2(X) ,
and areas x < t and x > t are marked as L1 and L2 resepctively. In this way, probability
errors become P1ϵ1 = B+ Cand P2ϵ2 = A . Total Bayesian error becomes ϵ = A+B+ C ,
where A, B and C are marked areas, for example: B = ∫ t,

t
P1f1(X)dX . This decision rule

generates minimal possible probability desicion error. Calculating of Bayesian probability
error is very complex problem, because this probability is calculated with probability density
function integration (which is function of more variables) trough very complex areas. Because
of that it is much easier to consider the problem in discrimination function domain, and
integration can be performed through this function. Random variable is scalar, so the
integration problem can be performed in one dimensional space. We can write this as:

where fh(h/wi) is aposteriori probability density function of discrimination function h for
samples that come from class wi .

For our problem for artificially generated data random vector X is normally distributed.

If random vector X is normally distributed, its probability density function can be written as:

ϵ1 = ∫ ln(P1/P2)

−∞
fh(h/w1)dh

ϵ2 = ∫ ∞

ln(P1/P2)
fh(h/w2)dh

NX(M, Σ) =
1

(2π)n/2|Σ|1/2
e−

1
2
d2(X) =

1

(2pi)n/2|Σ|1/2
e−

1
2
(X−M)TΣ−1(X−M)

Poglavlje 2 First classification problem
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where NX(M, Σ) is shorted notation for normal distribution with mathematical expectation M
and covariance matrix Σ .Function d2(X) is called statistical distance (or d2 curve) of vector
X from mathematical expectation vector M.

DISCRIMINATION FUNCTION
In this section expression for discrimination function is given.

For our problem of artificially generated data we have aposteriori probability density
functions fi(X) , where i=1,2. These functions are normal, with mathematical expectation
vector Mi and covariance matrix Σi . Bayesian minimal error decision rule can be written in
form:

Now we can replace f1(X) and f2(X) in upper equation and rewrite expression for h(x):

We will use the logarithm propery that logarithm of quotient is difference of logarithm of
numerator and logarithm of denumerator:

Finally, we can write expression for discrimination function in final form:

h(x) = −ln(l(X)) = −ln(f1(X)) + ln(f2(X)) < ln(
P1

P2
) ⇒ X ∈ w1

h(x) = −ln(
1

(2pi)n/2|Σ1|
1/2

e−
1
2
(X−M1)

TΣ−1
1 (X−M1))

+ ln(
1

(2pi)n/2|Σ2|
1/2

e−
1
2
(X−M2)

TΣ−1
2 (X−M2))

h(X) = −ln(
e−

1
2
(X−M1)

TΣ−1
1 (X−M1)

(2π)n/2|Σ1|
1/2

) + ln(
e−

1
2
(X−M2)

TΣ−1
2 (X−M2)

(2π)n/2|Σ2|
1/2

)

h(X) = −ln(e−
1
2
(X−M1)

TΣ−1
1 (X−M1)) + ln((2π)n/2|Σ1|

1/2) + ln(e−
1
2
(X−M2)

TΣ−1
2 (X−M2))

− ln((2π)n/2|Σ2|
1/2)

h(x) = −(−
1
2
(X −M1)TΣ−1

1 (X −M1)) + ln((2π)n/2) + ln(|Σ1|
1/2)

+ (−
1
2
(X −M2)TΣ−1

2 (X −M2)) − ln((2π)n/2) − ln(|Σ2|
1/2)

h(x) =
1
2
(X −M1)TΣ−1

1 (X −M1) + ln(|Σ1|
1/2) −

1
2
(X −M2)TΣ−1

2 (X −M2)

− ln(|Σ2|
1/2)

h(x) =
1
2
(X −M1)TΣ−1

1 (X −M1) −
1
2
(X −M2)TΣ−1

2 (X −M2) +
1
2
ln(

|Σ1|

|Σ2|
)

Poglavlje 2 First classification problem
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DISCRIMINATION FUNCTION WITH SAME
COVARIANCE MATRIX
In this section expressions for discrimination function when covariance
matrix are same is given.

Last equation shows that decision boundary is quadratic function of X. If two classes have
same covariance matrix, ie. if Σ1 = Σ2 = Σ , decision boundary becomes linear function of X
and can be written in next form:

In our classification problem of artificially generated data classes have same covariance
matrix and apriori probabilities of classes appearence are same. So, we can write expression
for classification in the first class:

Similarly, we can write expression for classification in second class:

As we can see our classifier is line (we have linear function of X).

DRAWING OF DECISION BOUNDARY
In this section drawing of decision boundary is explained.

I we want to draw our line, we can do that as follows. Decision of belonging to one of two
classes is based on value of decision boundary (is it bigger or smaller then zero), so if we
want to draw boundary itself, we must equal expression for h(x) with zero:

For ease of writing, we can form matrix M3 :

h(x) = (M2 −M1)TΣ−1X +
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2)

h(x) = (M2 −M1)TΣ−1X +
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2) < ln(

P1

P2
) ⇒ X ∈ w1

h(x) = (M2 −M1)TΣ−1X +
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2) < ln(

0.5
0.5

) ⇒ X ∈ w1

h(x) = (M2 −M1)TΣ−1X +
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2) < ln(1) ⇒ X ∈ w1

h(x) = (M2 −M1)TΣ−1X +
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2) < 0 ⇒ X ∈ w1

h(x) = (M2 −M1)TΣ−1X +
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2) > 0 ⇒ X ∈ w2

h(x) = (M2 −M1)TΣ−1X +
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2) = 0

M3 = M2 −M1 = [m1

m2
]

Poglavlje 2 First classification problem
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Also, inverse covariance matrix can be written as:

For our problem, vector X is two dimensional vector and can be written as:

Now, our expression for h(x) can be written in next form:

In order to draw our line, we must write expression for X2 of X1 , because we are in
X1X2 space. In other words, we have linear relationship and we want to express y of x, and
in our case that is X2 of X1 . We must perform matrix multiply of first part of our expression
and put X2 on the left side of equal sign. We can do that as follows:

SHAPES OF BAYESIAN CLASSIFIERS
In this section shapes of Bayesian classifiers are explained.

In our classification problem covariance matrix are same, so discrimination function is line.

Shape of discrimination function will depend of classes distribution statistics. Depending of
classes distribution statistics, discrimination function can be:

1. parable
2. line
3. hyperbola
4. ellipse

In literature we can often find for Bayesian classifier term Naive Bayesian classifier. That is
because this classifier has assumption that chosen features for classification problem are

Σ−1 = [ c11
c21

c12

c22
]

X = [X1

X2
]

h(x) = [m1 m2 ] [ c11
c21

c12

c22
] [X1

X2
] +

1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2)

[m1c11 +m2c21 m1c12 +m2c22 ] [X1

X2
] +

1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2) = 0

(m1c11 +m2c21)X1 + (m1c12 +m2c22)X2 +
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2) = 0

(m1c11 +m2c21)X1 +
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2) = −(m1c12 +m2c22)X2

(m1c12 +m2c22)X2 = −(m1c11 +m2c21)X1 −
1
2
(M T

1 Σ−1M1 −M T
2 Σ−1M2)

X2 =
−(m1c11 +m2c21)X1 − 1

2 (M
T
1 Σ−1M1 −M T

2 Σ−1M2)

(m1c12 +m2c22)

Poglavlje 2 First classification problem
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Slika 2.3 Characteristical shapes of Bayesian classifiers depending of classes distribution statistics [7]

independent. Because of this assumption we can write decision rules as they are described
previously.

This assumption is not really justified, because in practice selected features are almost
always dependent. Although this assumption is naive, Bayesian classifier gives very good
results in practice.

SOLUTION OF FIRST CLASSIFICATION PROBLEM
IMPLEMENTED IN PYTHON
In this section is given solution of first classification problem
implemented in Python.

#Generating of artificial data
import numpy as np
import matplotlib.pyplot as plt
M1 =np.array([-1, 4])
M2 =np.array([3, 1])
Sigma =np.array([[2, -1], [-1, 1]])
np.random.seed(0)
N=200
y1, y2 = np.random.multivariate_normal(M1, Sigma, N).T
z1, z2 = np.random.multivariate_normal(M2, Sigma, N).T
plt.plot(y1, y2, '*m',label='Class I')
plt.plot(z1, z2, 'oc',label='Class II')

Poglavlje 2 First classification problem
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plt.grid(True)
plt.title('Two classes presented in x1 x2 space')
plt.xlabel('x1')
plt.ylabel('x2')
plt.legend()
plt.show()
y1.shape

#Discrimination line calculating
from scipy import linalg
invSigma=linalg.inv(Sigma)
M3=M2.T-M1.T
m1=M3[0]
m2=M3[1]
x1=np.arange(-5,7,0.1)
x2=[-(m1*invSigma[0,0]+m2*invSigma[1,0])*x1-0.5*(M1.T.dot(invSigma).dot(M1)-M2.T.dot
(invSigma).dot(M2))]/(m1*invSigma[0,1]+m2*invSigma[1,1])
plt.plot(y1, y2, '*m',label='Klasa I')
plt.plot(z1, z2, 'oc',label='Klasa II')
plt.plot(x1,x2.T,'k--')
plt.grid(True)
plt.title('Representation of two classes and discrimination line in x1 x2
space-training dataset')
plt.xlabel('x1')
plt.ylabel('x2')
plt.legend()
plt.show()

# New test data
M11 =np.array([-1.1, 4.1])
M21 =np.array([3.03, 1.02])
Sigma1 =np.array([[2.1, -1.1], [-1.1, 1.1]])
N1=50
y11, y21 = np.random.multivariate_normal(M11, Sigma1, N1).T
z11, z21 = np.random.multivariate_normal(M21, Sigma1, N1).T
plt.plot(y1, y2, '*m',label='Klasa I')
plt.plot(z1, z2, 'oc',label='Klasa II')
plt.plot(y11,y21,'*r')
plt.plot(z11,z21,'*g')
plt.plot(x1,x2.T,'k--')
plt.title('Representation of two classes and discrimination line in x1 x2
space-training and testing dataset')
plt.grid(True)
plt.xlabel('x1')
plt.ylabel('x2')
plt.legend()
plt.show()

plt.plot(y11,y21,'*r',label='Klasa I')
plt.plot(z11,z21,'*g',label='Klasa II')
plt.plot(x1,x2.T,'k--')
plt.grid(True)

Poglavlje 2 First classification problem
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plt.title('Prikaz test podataka u x1 x2 prostoru')
plt.title('Representation of two classes and discrimination line in x1 x2
space-testing dataset')
plt.xlabel('x1')
plt.ylabel('x2')
plt.legend()
plt.show()

#Calculating of error
#First class
x1p1=y11
x2p1=y21
h11=(m1*invSigma[0,0]+m2*invSigma[1,0])*x1p1+(m1*invSigma[0,1]+m2*invSigma[1,1])*x2p
1+0.5 *(M1.T.dot(invSigma).dot(M1)-M2.T.dot(invSigma).dot(M2))
error1=0
for i in range(0,N1):

if h11[i]>0:
error1=error1+1

#Second class
x1p2=z11
x2p2=z21
h21=(m1*invSigma[0,0]+m2*invSigma[1,0])*x1p2+(m1*invSigma[0,1]+m2*invSigma[1,1])*x2p
2+0.5 *(M1.T.dot(invSigma).dot(M1)-M2.T.dot(invSigma).dot(M2))
error2=0
for i in range(0,N1):

if h21[i]<0:
error2=error2+1

print(error1,error2)

#Classification error
Eps1=((error1)/N1)
Eps2=((error2)/N1)
P=0.5*Eps1+0.5*Eps2 #Total Bayesian error
T=(1-P)*100 #Accuracy
print(T)

BAYESIAN CLASSIFIER FOR FIRST CLASSIFICATION
PROBLEM
In this section training and testing dataset and discrimination line
generated with Python code are shown.

After running the code next figures are generated:

Poglavlje 2 First classification problem
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Slika 2.4 Training dataset and discrimination line. [Source: Author]

Slika 2.5 Training and testing dataset and discrimination line. [Source: Author]

Slika 2.6 Testing dataset and discrimination line. [Source: Author]

After calculating of Type I error and Type II error on testing dataset we get 1 sample that is
wrongly classified from class I, and 5 samples that are wrongly classified from class II.
Classifier accuracy is 94%.

One important note: Discrimination line is learned on training dataset (Figure 4) and same
discrimination line is used for testing dataset (Figure 6). Our discrimination line is our
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Bayesian classifier that we learned and after learning phase we used it on new data in testing
phase.
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Slika 3.1 Species of the Iris plant [8]

Poglavlje 3

Second classification problem

CLASSIFICATION OF IRIS DATASET
In this section second classification problem is given.

Second classification problem: Classification of Iris dataset.

Task: Choose two features for representation of data and discrimination lines in two
dimensional space. Perform classification.

Description of Iris dataset: Iris dataset is a set with Iris plant species. Namely, the plant Iris
can be classified into three types based on the width and length of the petals and the width
and length of the sepals: Iris Versicolor, Iris Setosa and Iris Virginica. This dataset was formed
back in 1936 by biologist and statistician Fisher, but it is still used today as a good initial
example of machine learning. The species of the Iris plant are shown in the following figure:

We can see from Figure 1 that each species has a different width and length of sepals and
petals, so based on these characteristics, species of the Iris plant can be determined. In fact,
the lengths and widths of petals and sepals will be our features, because they describe each
type of Iris plant well and distinguish between classes, i.e. Iris plant species. The iris dataset
consists of five columns. The first four columns are our features, i.e. descriptors of our
classes. The first column represents the length of the sepal, the second column represents
the width of the sepal, the third column represents the length of the petal, while the fourth
column represents the width of the petal. The fifth column represents our classes, i.e. Iris
plant species. So, for a certain length and width of the petals and sepals, species of a plant Iris
is known exactly, and it is marked in the fifth column. Therefore, the fifth column represents
the target values for our dataset.
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Slika 3.2 Representation of Iris dataset with petal length and petal width. [Source: Author]

Slika 3.3 Representation of Iris dataset with sepal length and sepal width. [Source: Author]

REPRESENTATION OF IRIS DATASET WITH TWO
FEATURES
In this section representation of Iris dataset with two features is given.

We will represent our dataset in two dimensions for ease of visualization. For that purpose,
we will choose two features out of four. On the figures below are shown visualizations with
two features, so we can decide which features are better for our classification problem.

Poglavlje 3 Second classification problem
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We can see that with choice of features on Figure 2 we have separable classes and we can
expect good classification results. With choice of features as on Figure 3, we have overlapping
between classes Iris Versicolor and Iris Virginica, so these two features do not make good
distinguish between classes and we will not use them in our classification problem.

DISCRIMINATION FUNCTION WITH DIFFERENT
COVARIANCE MATRIX
In this section discrimination function with different covariance matrix
is given.

In our second classification problem we have classes with different mean vectors and
different covariance matrix. Here, we will have also have binary classification problem, but
now we must fine two discrimination functions- first one between classes Iris Setosa and Iris
Versicolor and second between classes Iris versicolor and Iris Virginica.
When covariance matrix are not same, then discrimination function is not line, it is parable.

When we have two classes with different covariance matrix and different mean vector, it can
be written as:

Our discrimination function can be written as follows:

BAYESIAN CLASSIFIER
In this section expression for Bayesian classifier for second
classification problem is given.

Σ−1
1 = [ z11

z21

z12

z22
]

Σ−1
2 = [ k11

k21

k12

k22
]

M1 = [m11

m12
]

M2 = [m21

m22
]

h(x) =
1
2
(X −M1)TΣ−1

1 (X −M1) −
1
2
(X −M2)TΣ−1

2 (X −M2) +
1
2
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)

h(x) =
1
2
([X1
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])T [ z11
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]−1

([X1
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1
2
([X1
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]−1

([X1

X2
] − [m21
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]) + 1

2
ln(

|Σ1|

|Σ2|
)
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We can now write our discrimination function in final form when we have different covariance
matrix:

Equation above is parable. Again, we can see that shape of Bayesian classifier will depend of
classes distribution statistic.

Now we can implement solution for our problem in Python.

SOLUTION OF SECOND CLASSIFICATION PROBLEM
IMPLEMENTED IN PYTHON
In this section solution of second classification problem implemented in
Python is given.

import sklearn
from sklearn import datasets
dataset=datasets.load_iris()
X=dataset.data
Y=dataset.target

import matplotlib.pyplot as plt

plt.scatter(X[0:50,2],  X[0:50,3],c=u'y',marker='*',    label='Iris Setosa')
plt.scatter(X[50:100,2],    X[50:100,3],    c=u'r',marker='2',  label='Iris
Versicolor')
plt.scatter(X[100:150,2],   X[100:150,3],   c=u'g',marker='.',label =   'Iris

h(x) =
1
2
[X1 −m11 X2 −m12 ] [ z11

z21

z12

z22
]−1 [X1 −m11

X2 −m12
]

−
1
2
[X1 −m21 X2 −m22 ] [ k11

k21

k12

k22
]−1 [X1 −m21

X2 −m22
] +

1
2
ln(

|Σ1|

|Σ2|
)

h(x)

=
1
2
[ (X1 −m11)z11 + (X2 −m12)z21 (X1 −m11)z12 + (X2 −m12)z22 ] [X1 −m11

X2 −m12
]

−
1
2
[ (X1 −m21)k11 + (X2 −m22)k21 (X1 −m21)k12 + (X2 −m22)k22 ] [X1 −m21

X2 −m22
]

+
1
2
ln(

|Σ1|

|Σ2|
)

h(x) =
1
2
[((X1 −m11)z11 + (X2 −m12)z21)(X1 −m11)

+ ((X1 −m11)z12 + (X2 −m12)z22)(X2 −m12)]

−
1
2
[((X1 −m21)k11 + (X2 −m22)k21)(X1 −m21)

+ ((X1 −m21)k12 + (X2 −m22)k22)(X2 −m22)] +
1
2
ln(

|Σ1|

|Σ2|
)
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Virginica')
plt.xlabel('Petal length')
plt.ylabel('Petal width')
plt.legend()
plt.show()

plt.scatter(X[0:50,0],  X[0:50,1],c=u'y',marker='*',    label='Iris Setosa')
plt.scatter(X[50:100,0],    X[50:100,1],    c=u'r',marker='2',  label='Iris
Versicolor')
plt.scatter(X[100:150,0],   X[100:150,1],   c=u'g',marker='.',label =   'Iris
Virginica')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.legend()
plt.show()

import numpy as np
X1 = X[0:50, 2:4]
X2 = X[50:100, 2:4]
X3 = X[100:150, 2:4]
sigma1 = np.cov(X1.T)
sigma2 = np.cov(X2.T)
sigma3 = np.cov(X3.T)

Xaxis=np.arange(0,8,0.1)
Yaxis=np.arange(0,3,0.1)
x1,x2=np.meshgrid(Xaxis,Yaxis)
from scipy import linalg
invSigma1 = linalg.inv(sigma1)
invSigma2 = linalg.inv(sigma2)
invSigma3 = linalg.inv(sigma3)
M1 =np.mean(X1,axis=0)
M2 =np.mean(X2,axis=0)
M3 =np.mean(X3,axis=0)

y=0.5*(((x1-M1[0])*invSigma1[0][0]+(x2-M1[1])*invSigma1[1][0])*(x1-M1[0])+((x1-
M1[0])*invSigma1[0][1]+(x2-M1[1])*invSigma1[1][1])*(x2-M1[1]))-0.5*(((x1-
M2[0])*invSigma2[0][0]+(x2-M2[1])*invSigma2[1][0])*(x1-M2[0])+((x1-M2[0])*invSigma2[
0]
[1]+(x2-M2[1])*invSigma2[1][1])*(x2-M2[1]))
+0.5*np.log(np.linalg.det(sigma1)/np.linalg.det(sigma2))

b=0.5*(((x1-M2[0])*invSigma2[0][0]+(x2-M2[1])*invSigma2[1][0])*(x1-M2[0])+((x1-
M2[0])*invSigma2[0][1]+(x2-M2[1])*invSigma2[1][1])*(x2-M2[1]))-0.5*(((x1-
M3[0])*invSigma3[0][0]+(x2-M3[1])*invSigma3[1][0])*(x1-M3[0])+((x1-M3[0])*invSigma3[
0]
[1]+(x2-M3[1])*invSigma3[1][1])*(x2-M3[1]))
+0.5*np.log(np.linalg.det(sigma2)/np.linalg.det(sigma3))
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plt.scatter(X[0:50,2], X[0:50,3],c=u'y',marker='*', label='Setosa')
plt.scatter(X[50:100,2], X[50:100,3], c=u'r',marker='2', label='Versicolor') #
selekcija
plt.scatter(X[100:150,2], X[100:150,3], c=u'g',marker='.',label = 'Virginica') #
plt.xlabel("Sepal length")
plt.ylabel("Sepal width")
plt.legend(loc="upper right")
plt.contour(x1,x2,y,0,colors='blue')
plt.contour(x1,x2,b,0,colors='red')
plt.grid(True)
plt.title('Iris species in 2D plot with classification lines')
plt.show()

x1p1 = X[0:50, 2]
x2p1 = X[0:50, 3]
h1=0.5*(((x1p1-M1[0])*invSigma1[0][0]+(x2p1-M1[1])*invSigma1[1][0])*(x1p1-M1[0])+((x
1p1-
M1[0])*invSigma1[0][1]+(x2p1-M1[1])*invSigma1[1][1])*(x2p1-M1[1]))-0.5*(((x1p1-
M2[0])*invSigma2[0][0]+(x2p1-M2[1])*invSigma2[1][0])*(x1p1-M2[0])+((x1p1-
M2[0])*invSigma2[0][1]+(x2p1-M2[1])*invSigma2[1][1])*(x2p1-M2[1]))
+0.5*np.log(np.linalg.det(sigma1)/np.linalg.det(sigma2))
error1=0
for i in h1:
if i>0:
error1=error1+1

x1p2 = X[50:100, 2]
x2p2 = X[50:100, 3]
h2=0.5*(((x1p2-M1[0])*invSigma1[0][0]+(x2p2-M1[1])*invSigma1[1][0])*(x1p2-M1[0])+((x
1p2-
M1[0])*invSigma1[0][1]+(x2p2-M1[1])*invSigma1[1][1])*(x2p2-M1[1]))-0.5*(((x1p2-
M2[0])*invSigma2[0][0]+(x2p2-M2[1])*invSigma2[1][0])*(x1p2-M2[0])+((x1p2-
M2[0])*invSigma2[0][1]+(x2p2-M2[1])*invSigma2[1][1])*(x2p2-M2[1]))
+0.5*np.log(np.linalg.det(sigma1)/np.linalg.det(sigma2))
error2=0
for i in h2:
if i<0:

error2=error2+1
Eps1=((error1)/50.0)

Eps2=((error2)/50.0)
P=0.5*Eps1+0.5*Eps2
T=(1-P)*100
print('Classification of Setosa and Versicolor - Classification accuracy: '
+str(T)+'%')

print('Number of bad classified samples from class Setosa: '+ str(error1))
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print('Number of bad classified samples from class Versicolor: '+ str(error2))

x1p1 = X[50:100, 2]
x2p1 = X[50:100, 3]
h1=0.5*(((x1p1-M2[0])*invSigma2[0][0]+(x2p1-M2[1])*invSigma2[1][0])*(x1p1-M2[0])+((x
1p1-
M2[0])*invSigma2[0][1]+(x2p1-M2[1])*invSigma2[1][1])*(x2p1-M2[1]))-0.5*(((x1p1-
M3[0])*invSigma3[0][0]+(x2p1-M3[1])*invSigma3[1][0])*(x1p1-M3[0])+((x1p1-
M3[0])*invSigma3[0][1]+(x2p1-M3[1])*invSigma3[1][1])*(x2p1-M3[1]))
+0.5*np.log(np.linalg.det(sigma2)/np.linalg.det(sigma3))
error1=0
for i in h1:
if i>0:

error1=error1+1
x1p2 = X[100:150, 2]
x2p2 = X[100:150, 3]
h2=0.5*(((x1p2-M2[0])*invSigma2[0][0]+(x2p2-M2[1])*invSigma2[1][0])*(x1p2-M2[0])+((x
1p2-
M2[0])*invSigma2[0][1]+(x2p2-M2[1])*invSigma2[1][1])*(x2p2-M2[1]))-0.5*(((x1p2-
M3[0])*invSigma3[0][0]+(x2p2-M3[1])*invSigma3[1][0])*(x1p2-M3[0])+((x1p2-
M3[0])*invSigma3[0][1]+(x2p2-M3[1])*invSigma3[1][1])*(x2p2-M3[1]))
+0.5*np.log(np.linalg.det(sigma2)/np.linalg.det(sigma3))
error2=0
for i in h2:
if i<0:

error2=error2+1
Eps1=((error1)/50.0)
Eps2=((error2)/50.0)
P=0.5*Eps1+0.5*Eps2
T=(1-P)*100
print('Classification of Versicolor and Virginica - Classification accuracy: '
+str(T)+'%')

print('Number of bad classified samples from class Versicolor: '+ str(error1))

print('Number of bad classified samples from class Virginica: '+ str(error2))

BAYESIAN CLASSIFIER FOR IRIS DATASET
In this section Bayesian classifier for Iris dataset is presented.

After running the code classification of Iris dataset is performed:
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Slika 3.4 Classification of Iris dataset [Source:Author]

Slika 3.5 Accuracy of classifier [Source:Author]

We can see on Figure 4 that Bayesian classifier for our second classification problem is
parable. Also, we can notice that classes Iris Setosa and Iris Versicolor are perfectly classified
with 100% accuracy, while classification accuracy is 96% for classes Iris Versicolor and Iris
Virginica. These results are expected, because classes Iris Setosa and Iris Versicolor are
separable, while classes Iris Versicolor and Iris Virginica are not separable, so we must expect
some classification error. Bayesian classifier guarantees that this classification error will be
minimal.

We saw in this classification problem how important is good choice of features. If features
doesn't describe our data we can't expect good classification results.

Of course, for this problem we could use all features that we've got in our dataset, but then
we couldn't visualize our data in two dimensional space, so that is the reason for choosing of
two features.

Ova lekcija sadrži video materijal. Ukoliko želite da pogledate ovaj video morate da
otvorite LAMS lekciju.
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Poglavlje 4

Homework

PRACTICAL EXAMPLES FOR HOMEWORK
In this section practical tasks for solving are given.

Assignment 1.

Two classes with two-dimensional shapes are given with normal probability density functions:

Task: Assuming that prior probabilities of classes are same, generate 600 samples for
each class and project a minimal error Bayesian classifier. Visualize data and discrimination
function h(x)=0. Calculate Type I error and Type II error and accuracy of classifier.

Assignment 2.
Dataset Banknotes.txt is given. The set represents banknotes that are classified as real or
fake banknotes based on their characteristics. The set was obtained by photographing the
banknotes, and then 4 attributes that reliably describe the set were extracted from the
images. The first four columns of the set are features and the fifth column contains the
target values. Task: Project a minimal error Bayesian classifier. Choose two features for data
visualization and discrimination function representation in 2D space. Calculate the accuracy
of classifier.

Solve the assignments in programming language Python.

f1(x) = N(M1, Σ1),M1 = [−2
1

] , Σ1 = [ 2
1

1
1

]

f2(x) = N(M2, Σ2),M2 = [ 2
4

] , Σ2 = [ 2
1

1
1

]
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Poglavlje 5

Zaključak

ZAKLJUČAK
In this section conclusion in given.

• In this lecture basic concepts of classification are explained.
• Two different classification problems vere posted and solved theoretically in detail.

Solutions of problems were implemented in Python programming language.
• It is shown that shape of Bayesian classifier depends of classes distribution statistics.
• In our first problem, we performed classification of data from two classes with same

covariance matrix and our Bayesian classifier was line.
• In our second problem, we performed classification of data from two classes with

different covariance matrix and our Bayesian classifier was parable.
• It is shown that choice of features is crucial for good classification results.
• It is shown that when we have overlapping between classes, we must have classification

error, but Bayesian classifier guarantee that this error will be minimal.

After this lecture, students will understand basic concepts of classification. They will be able
to solve classification problems with Bayesian classifier
and implement their knowledge on real world datasets.
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